神经网络Neural Network

1.前向传播

file

将上一层的输出作为下一层的输入,并计算下一层的输出,一直到输出层为止
file

(图片源自网络)
使用矩阵表示

z^{(l)} = w^{(l)}a^{(l-1)} + b^{(l)}
a^{(l)} = \sigma(z^{(l)})

2.反向传播

记损失函数为L = C(W, b)

我们的目标是求\frac{\partial L}{\partial w^{(l)}}\frac{\partial L}{\partial b^{(l)}}

根据链式法则,可以求出输出层的梯度

\frac{\partial L}{\partial w^{(l)}} = \frac{\partial L}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}} \frac{\partial z^{(l)}}{\partial w^{(l)}} = \frac{\partial L}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}} a^{(l-1)}
\frac{\partial L}{\partial b^{(l)}} = \frac{\partial L}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}} \frac{\partial z^{(l)}}{\partial b^{(l)}} = \frac{\partial L}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}}

\delta^{(l)} = \frac{\partial L}{\partial a^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}}

则隐藏层的梯度

\delta^{(l)} = \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial z^{(l+1)}}{\partial z^{(l)}} = \delta^{(l+1)} \frac{\partial z^{(l+1)}}{\partial z^{(l)}}

又由

z^{(l+1)} = w^{(l+1)} \sigma(z^{(l)}) + b^{(l+1)}

得到

\frac{\partial z^{(l+1)}}{\partial z^{(l)}} = (w^{(l+1)})^T\odot\sigma(z^{(l)})

因此

\delta^{(l)} = \delta^{(l+1)} (w^{(l+1)})^T\odot\sigma(z^{(l)})

\delta^{(l)}的递推关系式,可以很容易的求解w^{(l)} b^{(l)}的梯度

\frac{\partial L}{\partial w^{(l)}} = \delta^{(l)}a^{(l-1)}
\frac{\partial L}{\partial b^{(l)}} = \delta^{(l)}

下面是伪代码

file

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
下一篇